D-CALM: A Dynamic approach Clustering-based Active Learning Approach for Mitigating Bias

Advisor : Jia-Ling, Koh

task

Speaker : Ting-I, Weng

Source : ACL'23

Date : 2023/08/14

- Introduction -
- Method
- Experiment
- Conclusion

- Background
- Active Learning
- Challenge
 - bias
 - bias induction
 - effective batch selection
- D-CALM

Active Learning

Active Learning : actively select the most valuable samples for labeling

Challenge - bias

- classifiers may not perform well for underrepresented classes in the data
 - category has less data _ = 5
 - people of color have a high error rate

= 100%

• Hope to find more unlabeled data about people of color using active learning

rely on the judgment of the classifier high probability of selecting unrepresentative samples

Challenge - bias induction

- bias induction : active learning can make bias worse
- dataset bias Reality: the model finds more data here Ο semantic bias women, Jews... \bigcirc human annotator find uncertain data model ĥ unlabeled pool U persons of color Ideal: find more data

Challenge - effective batch selection

when the batch size is larger, the bias becomes greater

goal :

- Introduction
- Method
- Experiment
- Conclusion

- Active learning Query Strategy
- Query-Strategy
 - Least Confident
 - Smallest margin
 - Entropy
- Active Learning v.s. Clustering-based Active Learning
- Dynamic Cluster AL v.s. Clustering-based AL

Query-Strategy - Least Confident								
	$\hat{y} = argmax_y P_{\theta}(y x)$	$x_{LC}^* = \underset{x}{argmax} \ 1 - P_{\theta}(\hat{y} x)$						
unlabel	$\hat{y} = 0.93$	$x_{LC}^* = 1 - 0.93 = 0.07$						
unlabel	$\hat{y} = 0.55$ 0.1 $\hat{y} = 0.55$ Confident \bigcirc uncertain $\widehat{\uparrow}$	$x_{LC}^* = 1 - 0.55 = 0.45$						

Query-Strategy -	Smallest margin	
	$\hat{y} = argmax_y P_{\theta}(y x)$	$x_{MS}^* = \underset{x}{\operatorname{argmin}} P_{\theta}(\hat{y}_1 x) - P_{\theta}(\hat{y}_2 x)$
unlabel class A: 0.93 class B: 0.05 class C: 0.02	$\hat{y_1} = 0.93$ $\hat{y_2} = 0.05$	$x_{MS}^* = 0.93 - 0.05 = 0.88$
unlabel class A: 0.55 class B: 0.35 class C: 0.1	$\hat{y_1} = 0.55$ $\hat{y_2} = 0.35$	$x^*_{MS} = 0.55 - 0.35 = 0.2$ smallest margin \int uncertain $\hat{\uparrow}$ 12

Query-Strategy - Entropy								
	$log P_{\theta}(y_i x)$	$P_{\theta}(y_i x) log P_{\theta}(y_i x)$	$x_E^* = argmax_x - \sum_i P_{\theta}(y_i x) log P_{\theta}(y_i x)$					
unlabel	<pre>class A: -0.104 class B: -4.321 class C: -5.6438</pre>	<pre>class A: -0.09672 class B: -0.21605 class C: -0.11287</pre>	-(0.09672+0.21605+ 0.11287) = -0.4256 $x_E^* = -(-0.4256) = 0.4256$					
unlabel	class A: -0.8624 class B: -1.5145 class C: -3.3219	class A: -0.47432 class B: -0.53007 class C: -0.33219	-(0.47432+0.53007+ 0.33219) = -1.33658 $x_E^* = -(-1.33658) = 1.33658$ entropy incertain is 13					

Active Learning v.s. Clustering-based Active Learning

Active Learning

Clustering-based Active Learning

Dynamic Cluster AL v.s. Clustering-based AL

- Introduction
- Method
- Experiment
- Conclusion

• Dataset

•

- D-CALM v.s. Baseline with BERT
- D-CALM v.s. Baseline with SVM

Dataset		count :	70%	10%	: 20%
-	Dataset	classes	Pool	Dev	Test
book title	BOOK32	32	14K	2K	4K
hatespeech	CONAN	8	3.5K	0.5K	1K
emotion detection	CARER	6	16K	2K	4K
acceptable sentence	CoLA	2	8.5K	0.5K	0.5K
tweets for hatespeech	Hatespeech	3	17.2K	2.4K	4.9K
question	MRDA	5	14K	2K	4K
' snippets from IMDB	Q-Type	6	4.9K	0.5K	0.5K
reviews	Subjectivity	2	7K	1K	2K

unlabel : label : unlabel

metric: F1-score

60

50

40

30

20

F1-Score

F1-Score

Strategy: entropy •

D-CALM v.s. Baseline with BERT

• Strategy:entropy

D-CALM v.s. Baseline with SVM CONAN CoLA BOOK32 CARER Random + TopN + Cluster-TopN + D-CALM Random • TopN • Cluster-TopN • D-CALM Random TopN Cluster-TopN D-CALM Random + TopN + Cluster-TopN + D-CALM F1-Score F1-Score F1-Score F1-Score Number of Samples Number of Samples Number of Samples MRDA Q-TYPE Subjectivity Hatespeech

- Introduction
- Method
- Experiment
- Conclusion

Conclusion

1. The model trained by DCALM can second clustering the unlabeled data through the error rate, reduce the bias against underrepresented groups in the unlabeled data.

2. DCALM improvements are model-independent